Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 131884, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685541

RESUMEN

The importance of ß-glucan from S. cerevisiae in angiogenesis has not been well studied. We investigated whether ß-glucan induces angiogenesis through PI3K/Src and ERK1/2 signaling pathway in HUVECs. We identified that ß-glucan induced phosphorylation of PI3K, Src, Akt, eNOS, and ERK1/2. Subsequently, we found that this phosphorylation increased the viability of HUVECs. We also observed that stimulation of ß-glucan promoted the activity of MEF2 and MEF2-dependent pro-angiogenic genes, including EGR2, EGR3, KLF2, and KLF4. Additionally, the role of ß-glucan in angiogenesis was confirmed using in vitro and ex vivo experiments including cell migration, capillary-like tube formation and mouse aorta ring assays. To determine the effect of ß-glucan on the PI3K/Akt/eNOS and ERK1/2 signaling pathway, PI3K inhibitor wortmannin and ERK1/2 inhibitor SCH772984 were used. Through the Matrigel plug assay, we confirmed that ß-glucan significantly increased angiogenesis in vivo. Taken together, our study demonstrates that ß-glucan promotes angiogenesis via through PI3K and ERK1/2 signaling pathway.

2.
Nat Commun ; 15(1): 1487, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374152

RESUMEN

Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.


Asunto(s)
Sistema Cardiovascular , Placenta , Proteínas Gestacionales , Animales , Femenino , Humanos , Ratones , Embarazo , Diferenciación Celular , Desarrollo Embrionario , Placenta/metabolismo , Placentación/fisiología , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Factores Supresores Inmunológicos/metabolismo , Trofoblastos/metabolismo , Sistema Cardiovascular/embriología
3.
Biomater Res ; 27(1): 134, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102691

RESUMEN

BACKGROUND: Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes. METHODS: We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components. RESULTS: We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size. CONCLUSIONS: Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.

4.
Sci Adv ; 8(48): eabq0898, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459558

RESUMEN

C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine and has high potential as a therapeutic target. However, the role of CTRP9 in cardiovascular disease pathogenesis remains unclear. We found CTRP9 to induce HDAC7 and p38 MAPK phosphorylation via tight regulation of AMPK in vascular endothelial cells, leading to angiogenesis through increased MEF2 activity. The expression of CTRP9 and atheroprotective MEF2 was decreased in plaque tissue of atherosclerotic patients and the ventricle of post-infarction mice. CTRP9 treatment inhibited the formation of atherosclerotic plaques in ApoE KO and CTRP9 KO mice. In addition, CTRP9 induced significant ischemic injury prevention in the post-MI mice. Clinically, serum CTRP9 levels were reduced in patients with MI compared with healthy controls. In summary, CTRP9 induces a vasoprotective response via the AMPK/HDAC7/p38 MAPK pathway in vascular endothelial cells, whereas its absence can contribute to atherosclerosis and MI. Hence, CTRP9 may represent a valuable therapeutic target and biomarker in cardiovascular diseases.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Animales , Ratones , Proteínas Angiogénicas , Adipoquinas , Complemento C1q , Células Endoteliales , Proteínas Quinasas Activadas por AMP , Histona Desacetilasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos , Glicoproteínas , Adiponectina/genética
5.
Mol Cells ; 45(6): 403-412, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35611688

RESUMEN

Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.


Asunto(s)
Autofagia , MicroARNs , Animales , Apoptosis/genética , Autofagia/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipoxia/genética , Ratones , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
6.
Int J Biol Macromol ; 211: 556-567, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35569678

RESUMEN

The role of yeast-derived ß-glucan in angiogenesis has not been elucidated because there have been few specific studies on its clinical and physiological significance. Therefore, this study investigated the correlation between ß-glucan and histone deacetylase 5 (HDAC5) in human umbilical vein endothelial cells (HUVECs), revealing the role of ß-glucan in angiogenesis. We confirmed that HDAC5 was phosphorylated by ß-glucan stimulation and released from the nucleus to the cytoplasm. Furthermore, we found that ß-glucan-stimulated HDAC5 translocation mediates the transcriptional activation of MEF2. As a result, the expression of KLF2, EGR2, and NR4A2, whose expression is MEF2-dependent and involved in angiogenesis, increased. Thus, we showed the activity of ß-glucan in angiogenesis through in vitro and ex vivo assays including cell migration, tube formation, and aortic ring analyses. Specifically, application of an HDAC5 inhibitor repressed MEF2 transcriptional activation in both in vitro and ex vivo angiogenesis. HDAC5 inhibitor LMK235 inhibited the proangiogenic activity of beta-glucan, suggesting that ß-glucan induces angiogenesis through HDAC5. These findings suggest that HDAC5 is essential for angiogenesis, and that ß-glucan induces angiogenesis. In conclusion, this study demonstrates that ß-glucan induces angiogenesis through HDAC5. It also suggests that ß-glucan has potential value as a novel therapeutic agent for modulating angiogenesis.


Asunto(s)
Saccharomyces cerevisiae , beta-Glucanos , Histona Desacetilasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Fosforilación , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , beta-Glucanos/farmacología
7.
J Exp Clin Cancer Res ; 41(1): 87, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260183

RESUMEN

BACKGROUND: Epigenetic regulations frequently appear in Glioblastoma (GBM) and are highly associated with metabolic alterations. Especially, Histone deacetylases (HDACs) correlates with the regulation of tumorigenesis and cell metabolism in GBM progression, and HDAC inhibitors report to have therapeutic efficacy in GBM and other neurological diseases; however, GBM prevention and therapy by HDAC inhibition lacks a mechanism in the focus of metabolic reprogramming. METHODS: HDAC2 highly express in GBM and is analyzed in TCGA/GEPIA databases. Therefore, HDAC2 knockdown affects GBM cell death. Analysis of RNA sequencing and qRT-PCR reveals that miR-3189 increases and GLUT3 decreases by HDAC2 knockdown. GBM tumorigenesis also examines by using in vivo orthotopic xenograft tumor models. The metabolism change in HDAC2 knockdown GBM cells measures by glucose uptake, lactate production, and OCR/ECAR analysis, indicating that HDAC2 knockdown induces GBM cell death by inhibiting GLUT3. RESULTS: Notably, GLUT3 was suppressed by increasing miR-3189, demonstrating that miR-3189-mediated GLUT3 inhibition shows an anti-tumorigenic effect and cell death by regulating glucose metabolism in HDAC2 knockdown GBM. CONCLUSIONS: Our findings will demonstrate the central role of HDAC2 in GBM tumorigenesis through the reprogramming of glucose metabolism by controlling miR-3189-inhibited GLUT3 expression, providing a potential new therapeutic strategy for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transportador de Glucosa de Tipo 3 , MicroARNs , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glucosa , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , MicroARNs/metabolismo
8.
Exp Mol Med ; 54(2): 103-114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115674

RESUMEN

Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Adiponectina/genética , Adiponectina/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/terapia , Complemento C1q , Trasplante de Microbiota Fecal , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Transplant Proc ; 53(1): 408-416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32616346

RESUMEN

PURPOSE: MicroRNA could be biomarker and therapeutic target for rejection. The aim of this study was to investigate the role of miR-142-5p in allogeneic immune responses using in vitro and in vivo models. MATERIALS AND METHODS: Primary and immortalized human umbilical vein endothelial cells (HUVECs) were cultured with unrelated blood mononuclear cells to induce allogeneic immune responses. Syngeneic and allogeneic skin graft was performed in mice. Flow cytometry, quantitative reverse transcription-polymerase chain reaction, and Western blotting was performed to understand the underlying mechanisms. RESULTS: miR-142-5p was up-regulated in primary HUVEC and a HUVEC line when allogeneic immune responses were elicited. miR-142-5p was also up-regulated in the murine allogeneic skin graft. Overexpression of miR-142-5p in HUVEC increased the expression of HLA-ABC and HLA-DR additively to allogeneic immune responses, suggesting a possible increase in alloantigen presentation. Inhibition of miR-142-5p reduced the expression of HLA-DR. ZEB1, a putative target gene of miR-142-5p, was down-regulated in HUVEC on allogeneic immune response as well as in murine allogeneic skin graft. CONCLUSION: These results suggest that the up-regulation of miR-142-5p on allogeneic immune response might facilitate endothelial activation to exacerbate rejection.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , MicroARNs/inmunología , Células Alogénicas/inmunología , Animales , Femenino , Humanos , Inmunidad/inmunología , Ratones , Regulación hacia Arriba
10.
Biochem Biophys Res Commun ; 519(4): 767-772, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31547990

RESUMEN

Mannoproteins (MPs) are a major component of yeast cell walls and consist of high levels of mannose in covalent complexes with proteins. MPs complexly enhance the immune system. We previously isolated a mutant yeast, K48L3, with a higher yield of MP from its cell wall than wild-type Saccharomyces cerevisiae, YPH499. We determined that K48L3 induces the release of nitric oxide in macrophage cells. The present study reports nitric-oxide-mediated angiogenesis by MP from K48L3 and the induction of the Akt/eNOS signal pathway. Western blotting and RT-PCR were used to demonstrate that MP treatment resulted in the upregulation of p-Akt, p-eNOS, and angiogenesis-mediated gene expression. Moreover, the angiogenesis activity of the MPs was demonstrated using three angiogenesis assays, namely, a cell migration assay, a tube-forming assay, and an ex vivo aorta ring assay. Thus, this study demonstrates for the first time that MPs from S. cerevisiae K48L3 induce angiogenesis in HUVECs via the Akt-eNOS-dependent signaling pathway.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Glicoproteínas de Membrana/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mutación , Neovascularización Fisiológica/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Proteínas Proto-Oncogénicas c-akt/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Sci Rep ; 9(1): 2628, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796231

RESUMEN

The rat is a time-honored traditional experimental model animal, but its use is limited due to the difficulty of genetic modification. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identified endonuclease Cpf1 system is applicable to rats. Here we report the first application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-deficient rats via CRISPR-Cpf1 system, characterized by high efficiency, successful germline transmission, multiple gene targeting capacity, and minimal off-target effect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infiltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efficiently and specifically in rats with genetic heritability and that Apoe knockout rats may help understand initial-stage atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Endonucleasas/metabolismo , Técnicas de Inactivación de Genes , Marcación de Gen , Animales , Apolipoproteínas E/genética , Secuencia de Bases , Modelos Animales de Enfermedad , Mutación/genética , Ratas Sprague-Dawley , Receptores de LDL/genética
12.
Radiat Res ; 191(3): 262-270, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30702968

RESUMEN

In the event of a mass casualty radiation scenario, biodosimetry has the potential to quantify individual exposures for triaging and providing dose-appropriate medical intervention. Structural maintenance of chromosomes 1 (SMC1) is phosphorylated in response to ionizing radiation. The goal of this study was to develop a new biodosimetry method using SMC1 phosphorylation as a measure of exposure to radiation. In the initial experiments, two normal human cell lines (WI-38VA-13 and HaCaT) and four lymphoblastoid cell lines were irradiated, and the levels of SMC1 phosphorylation at Ser-360 and Ser-957 were assessed using Western blotting. Subsequently, similar experiments were performed using peripheral blood mononuclear cells (PBMCs) obtained from 20 healthy adults. Phosphorylation of SMC1 at Ser-957 and Ser-360 was increased by exposure in a dose-dependent manner, peaked at 1-3 h postirradiation and then decreased gradually. Ser-360 was identified as a new phosphorylation site and was more sensitive to radiation than Ser-957, especially at doses below 1 Gy. Our results demonstrate a robust ex vivo response of phospho-SMC1-(Ser-360) to ionizing radiation in human PBMCs. Detection of phosphorylation at Ser-360 in SMC1 could be used as a marker of radiation exposure. Our findings suggest that it is feasible to measure blood cell-based changes in the phosphorylation level of a protein as an ex vivo radiation exposure detection method, even after low-dose exposure.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de la radiación , Serina/metabolismo , Línea Celular , Cromatina/metabolismo , Relación Dosis-Respuesta en la Radiación , Humanos , Fosforilación/efectos de la radiación , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 115(18): 4672-4677, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29588416

RESUMEN

Programmed cell death 5 (PDCD5) has been associated with human cancers as a regulator of cell death; however, the role of PDCD5 in the endothelium has not been revealed. Thus, we investigated whether PDCD5 regulates protein kinase B (PKB/AKT)-endothelial nitric oxide synthase (eNOS)-dependent signal transduction in the endothelium and affects atherosclerosis. Endothelial-specific PDCD5 knockout mice showed significantly reduced vascular remodeling compared with wild-type (WT) mice after partial carotid ligation. WT PDCD5 competitively inhibited interaction between histone deacetylase 3 (HDAC3) and AKT, but PDCD5L6R, an HDAC3-binding-deficient mutant, did not. Knockdown of PDCD5 accelerated HDAC3-AKT interaction, AKT and eNOS phosphorylation, and nitric oxide (NO) production in human umbilical vein endothelial cells. Moreover, we found that serum PDCD5 levels reflect endothelial NO production and are correlated with diabetes mellitus, high-density lipoprotein cholesterol, and coronary calcium in human samples obtained from the cardiovascular high-risk cohort. Therefore, we conclude that PDCD5 is associated with endothelial dysfunction and may be a novel therapeutic target in atherosclerosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Vascular , Animales , Proteínas Reguladoras de la Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Endotelio Vascular/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética
14.
Cancer Res ; 77(5): 1200-1211, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082405

RESUMEN

The clinical utility of approved EGFR small-molecule kinase inhibitors is plagued both by toxicity against wild-type EGFR and by metastatic progression in the central nervous system, a disease sanctuary site. Here, we report the discovery and preclinical efficacy of GNS-1486 and GNS-1481, two novel small-molecule EGFR kinase inhibitors that are selective for T790M-mutant isoforms of EGFR. Both agents were effective in multiple mouse xenograft models of human lung adenocarcinoma (T790M-positive or -negative), exhibiting less activity against wild-type EGFR than existing approved EGFR kinase inhibitors (including osimertinib). In addition, GNS-1486 showed superior potency against intracranial metastasis of EGFR-mutant lung adenocarcinoma. Our results offer a preclinical proof of concept for new EGFR kinase inhibitors with the potential to improve therapeutic index and efficacy against brain metastases in patients. Cancer Res; 77(5); 1200-11. ©2017 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Transfección
15.
Oncotarget ; 8(3): 4181-4195, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27935858

RESUMEN

Epidermal growth factor (EGF) signaling promotes cell proliferation and survival in several types of cancer. Here, however, we showed that EGF inhibits proliferation and promotes programmed cell death in non-small cell lung cancer (NSCLC) cells. In A549 cells, EGF increased redox factor-1 (Ref-1) expression and the association of Ref-1 with zinc finger-containing transcriptional regulator (EGR1) via activation of p22phox, RAC1, and an NADPH oxidase subunit. EGF increased p22phox and RAC1 expression through activation of purinergic receptors (P2Y). Elevated Ref-1/EGR1 levels increased phosphatase and tensin homolog (PTEN) levels, leading to inhibition of the Akt pathway. EGF-induced PTEN upregulation increased apoptosis and autophagy-induced damage in A549 cells, whereas Ref-1 knockdown blocked EGF-induced PTEN upregulation in an NADPH oxidase p22phox subunit-independent manner. In addition, p22phox knockdown restored EGF-induced effects, implying that changes in P2Y activity caused by EGF, which activates NADPH oxidase via RAC1, influenced Ref-1-mediated redox regulation. Finally, EGF similarly attenuated cell proliferation and promoted autophagy and apoptosis in vivo in a xenograft model using A549 cells. These findings reveal that EGF-induced redox signaling is linked to Ref-1-induced death in NSCLC cells.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor de Crecimiento Epidérmico/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Fosfohidrolasa PTEN/metabolismo , Regulación hacia Arriba , Células A549 , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor de Crecimiento Epidérmico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biomol Ther (Seoul) ; 24(5): 501-9, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27257011

RESUMEN

Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/ agent for cancer chemotherapy.

17.
Biochem Biophys Res Commun ; 473(1): 336-341, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27018384

RESUMEN

EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengths of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system.


Asunto(s)
Bacteriófagos/enzimología , Integrasas/genética , Recombinación Genética , Sitios de Ligazón Microbiológica , Bacteriófagos/genética , Secuencia de Bases , Dominio Catalítico , Línea Celular , Citometría de Flujo , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Genoma , Células HEK293 , Humanos , Integrasas/química , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Serina/química
18.
Cell Signal ; 28(3): 117-124, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26706435

RESUMEN

Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs.


Asunto(s)
Fosfoproteínas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Cromonas/farmacología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/química , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo
19.
J Biochem Mol Toxicol ; 30(1): 45-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26377927

RESUMEN

Roles of dietary phytochemicals in cancer chemoprevention via induction of nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant enzymes have been well established in a number of studies. In this study, FACS analysis was used to reveal that the intracellular reactive oxygen species level decreased at 0-25 µM of genipin treatment. Furthermore, immunofluorescence analysis and Western blotting were used to demonstrate that genipin treatment resulted in the upregulation and nuclear translocation of Nrf2, as well as upregulation of gastrointestinal glutathione peroxidase. Finally, we found that C-Jun-NH2-kinase (JNK) was also dose-dependently activated, where depleting JNK by using a biochemical inhibitor indicated that JNK was upstream of Nrf2. Interestingly, the antioxidant effects were limited to the treatment in the lower dosage of genipin, where higher dosage of genipin treatment resulted in the increased reactive oxygen species level and cytotoxicity. Thus, this study demonstrates for the first time that lower dosage of genipin results in the induction of JNK/Nrf2/ARE signaling pathway and protection from cell death.


Asunto(s)
Adenocarcinoma/metabolismo , Anticarcinógenos/farmacología , Iridoides/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/enzimología , Línea Celular Tumoral , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Elementos de Respuesta , Neoplasias Gástricas/enzimología
20.
Biochem Biophys Res Commun ; 468(1-2): 349-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26499076

RESUMEN

Glycolysis, the primary pathway metabolizing glucose for energy production, is connected to the hexosamine biosynthetic pathway (HBP) which produces UDP-N-acetylglucosamine (UDP-GlcNAc), a GlcNAc donor for O-linked GlcNAc modification (O-GlcNAc), as well as for traditional elongated glycosylation. Thus, glycolysis and O-GlcNAc are intimately associated. The present study reports the transcriptional activation of glycolytic genes by the transcription factor Sp1 and the O-GlcNAc-mediated suppression of Sp1-dependent activation of glycolytic genes. O-GlcNAc-deficient mutant Sp1 stimulated the transcription of nine glycolytic genes and cellular production of pyruvate, the final product of glycolysis, to a greater extent than wild-type Sp1. Consistently, this mutant Sp1 increased the protein levels of the two key glycolytic enzymes, phosphofructokinase (PFK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), to a greater extent than wild-type Sp1. Finally, the mutant Sp1 occupied GC-rich elements on PFK and GAPDH promoters more efficiently than wild-type Sp1. These results suggest that O-GlcNAcylation of Sp1 suppresses Sp1-mediated activation of glycolytic gene transcription.


Asunto(s)
Glucólisis , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional , Uridina Difosfato N-Acetilglucosamina/metabolismo , Secuencia de Bases , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación , Fosfofructoquinasas/genética , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/genética , Uridina Difosfato N-Acetilglucosamina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...